

Your Dependable Chemistry Partner

Customized Chemistry From Milligrams to Metric Tons

+1 215 367 5129

bingy@glsyntech.com

www.glsyntech.com

ヒドラス化学株式会社 TEL.03-3258-5031 FAX.03-3258-6535 info@hydrus.co.jp www.hydrus.co.jp

A Member of BHW Tech Group

Overview

- A Privately held, USA-based, Technology Developer and Custom Manufacturer
 Nurturing New Drug/Product Discovery, Development, and Manufacturing
- Well Recognized by Clients in the Industry Globally, with 27+ Years of Extensive Experience in Chemistry Know-how, Custom Synthesis, Proprietary Processes, Custom Manufacturing, and Pharma Chemistry Services
- State-of-the-art R&D Centers in USA & China, and Efficient Manufacturing Plants in China, Enabling Reliable Manufacturing and Supply of Challenging Pharmaceuticals
- Inhouse Process Expertise in Fluorinations, Hetero-cyclizations, Boronic Acids/Esters, Protected Amino Acids, Lab Reference Compounds, High-purity Omega-3 Products
- Expanding Target Custom Products, Specialty Reagents, Biocatalyst Technology Platform, and Industrial Catalyst Chemistries
- Strategic Commercial Development of High-purity Omega-3 Products (GMP & non-GMP)
- 17+ Years of Competent Pharma Chemistry Services
- BHW Tech Offering One-Stop Full-Spectrum Chemistry Solutions

Our Business Model

- Chemistry and Technology from Milligrams to Metric Tons
- Serving both Pharmaceuticals/Biotech/Human Health/Life Science and Specialty & Agro Chemical Industries
- A Privately Held USA Company with Manufacturing in China

- Direct to Market/Customer
- Direct to Regulation/Legislation/Liability
- Technology Leadership

- Cost Advantage/Rich Resource
- Scale of Economy Factor
- Growing China Market

JV Group - BHW Tech Group

☐ A USA Company with Registration in Pennsylvania, USA Joint Venture (JV) Partners of BHW Tech Group GLSyntech, LLC, Hatfield, PA 19440, USA, 27+ years Jiangyin PharmaAdvance, Inc., Jiangsu Province, China, 18+ years Shanghai Weiyuan Fine Fluorine S&D. Co., Ltd., Shanghai, China, 20+ years ☐ Formed in 2023 with a Global Technical Team of 190+ **Chemists/Engineers Primary Industry/Business Focuses Pharmaceutical and Biotech Industries Human Health Industries Specialty Chemical and Agro Chemical Industries** "1 + 1 > 2" Synergy and Expansion from Individual Established **Business** Global Customers, Global Operations, and Global Practice Standard

Industry and Business Focus

Pharma/Biotech Industry Focused

- Small Molecular Custom Synthesis (FFS and FTE)
- Custom Manufacturing
- Established Custom Products
- Inhouse Know-how Processes Enabling New API Development
- Unique Product Classes Fluoro Aromatices, Fluoro Heterocyclics, Advanced Boric Acids/Esters, Heterocyclic Products, Protected Amino Acids, Reference Standards (API, impurities, and metabolites...),...

Pharma/Human Health Industry Focused

- High-purity Omega-3 Products (EPA and DHA in EE form) for GMP Markets
- High-purity Omega-3 Products (EPA and DHA in EE form) for non-GMP Markets

Fluorination Technology and Applications

- Broad Range of Custom Fluoro Products
- Specialty Fluorinating Reagents

Specialty Industry Focused

- Catalyst Products (Imine Ligated NHC-Palladium Catalysts, Enzymes, and Ligands)
- Specialty Additives and Ingredients

Custom Chemistry_Process_Manufacturing Driven

Business Credentials

A Combined 65+ Years in Custom Chemistry Solution Businesses
A Key Supplier to Commercial API Productions for Two Top-10 Big Pharma Customers
Qualified for Three Phase III Drug Intermediates for Top-10 Big Pharma Customers
Qualified for a Recently Launched New Drug for a Top-10 Big Pharma
Seven Intermediates Qualified for Phase II Developmental Drugs
Successfully Marketed Four Specialty Chemical Products
High-purity EPA98EE in Phase II-III Developments under GMP
Executed Successfully Challenging Chemistry Service Projects (FTE/FFS) for 60+ US Pharma/Biotech/Institution Clients

R&D Center in USA

- Focus on New Chemistry Development and Technology Leadership
- Mainly Serving Pharma/Biotech Industries
- Kilo Production and Biological Services
- Process Development and Tech Transfer
- Located in Worcester, MA

R&D Operations in China

A Member of BHWTech Group

Logistics Center in China

- · Location in Tianjin, China
- About 1300 FT² Lab Space, Expandable to 5000 FT²
- Primary Technical and Testing Lab
- Supply Chain and Supplier Management
- Administrative Operations in China

Logistic and Technical Operations in China

Production Plants

A Member of BHWTech Group

Production Plants

- Each Plant Focusing on Specific Chemistries and Processes
- Manufacturing of Pharmaceuticals and Specialty Chemicals
- Extra Production Capacity (~35%) Available for New Projects
- ISO Certified Production Sites
- All Plants Successfully Granted with ISO Certification
- cGMP Approach via Projects

Plant 1 Plant 2 Plant 3

Jinzhou, Liaoning

Custom pharmaceuticals Fluor Aromatic Products Developmental Products Shanggao, Jiangxi

Fluorinating Reagents
Fluor Aliphatics
Fluor intermediates

Quzhou, Zhejiang

Pharma Intermediates
Specialty Products
Developmental Products

Manufacturing Capacity

Kilo Production/Pilot Plants/Commercial Plants

Equipment Capability

Total Reactor Capacity: > 500,000 L

Number of Reactors: 226

7000 L, 2 sets 6000 L, 3 sets

5000 L, 6 sets 2000-3000 L, 20 sets 1000-1500 L, 30 sets 100-500 L, 33 sets

Temperature Control: -78 to 300°C Up to 0.16 MPa

High Distillation and High-Pressure Capability

Stainless Steel, Porcelain, Glass-lined

QC/QA Capability

16 QC Chemists
NMR, GC, HPLC, LC-MS, Wet Chemistry and Analytical Lab
Advanced QA Instrumentation in US R&D Center
Material Approval and Release by QA

Chiral Technologies

A Member of BHWTech Group

Chemistry **Technologies**

Biocatalyst **Technologies**

- We are specialized in the following chem-transformation technologies
 - · Suzuki, Heck and Sonogashire Couplings
 - Chiral Heterocyclic Transformations
 - Protections of Amino Acids and their Derivatives (Fmoc-, Boc-)
 - Liquid Phase Peptide Synthesis
 - Freidel-Crafts Acylation and Alkylation
 - Thiophosgenation and Phosgenation
 - Fluorination, Bromination and Iodination
 - Acetoacetylation and Acrylation
 - Amidation and Amination
 - Azidation, Carbonylation and Carboxylation
 - Cyanomethylation and Cyclization
 - Diketene and Ketene Reactions
 - Epichlorohydrin Chemistry and Epoxidation
 - Hydrazine Chemistry and Reactions
 - Hydroformylation and Hydrosilylation
 - Nitromethylation and Nitrosation
 - Olefin Metathesis
 - Optically Active Cyanohydrin
 - Peroxidation and Silylations
 - Sulfochlorination, Sulfonation and Sulfoxidation
 - Thiocarbonylation and Tosylation
 - Transamination and Transesterification

- > Enzymatic Catalyst Products
 - Ketoreductases
 - Nitrilases
 - · Nitrile hydratases
 - · Ene reductases
 - Oxynitrilases
 - Transaminases
 - Nitro reductases
 - · Alcohol oxidases
 - P450s
 - Amidases
 - · Epoxide hydrolases
 - Lipases (immobilized)
 - · Proteases (immobilized)
 - · Esterases (immobilized)
- > Biocatalyst Services
 - · Biocatalyst libraries
 - · Lead screen Identification
 - · Process optimization
 - · Alternative process routes
- Alternative Processes Derived from Biocatalyst Transformation

CI OH O OME

montelukast

OH Ph NO ONC OBUT

Liptor intermediate

Levetiracetam (Keppra®)

ezetimibe

F NH₂ O N N N CF

Sitagliptin

In-house Chemistry Specialties

27+ Years of Good Chemistry Practice

- > Medicinal Chemistry and Custom Synthesis
- Process Development, and Contract R&D
- ➤ Kilo Scale GMP Service
- Custom Synthesis and Custom Manufacturing

Wide Range of Unique Custom Products

- > Fluoroaromatic/Fluoroheterocyclic Custom Intermediate Products
- Special Fluorinating Reagents
- Protected Amino Acids and Oligonucleotides
- Advanced Heterocyclic Compounds (N-, S- and O-based)
- > Advanced Boronic Acids and Esters
- ➤ Lab Reference Compounds (APIs, metabolites, impurities,...)
- Unique Scaffolds and Intermediates

High-purity Omega-3 Products

- ➤ High-pure GMP Products
- ➤ Broad range of EPA, DHA, and their Combos Products for non-GMP Markets

Novel Imine Ligated NHC-Palladium Catalysts

- Highly efficient for cross-coupling of aryl chlorides and aryl boronic acids
- Excellent catalyst stability with diverse ligand adjustments
- Better catalytical economics with milder reaction conditions

JV Synergy and Benefits

Great Benefits to Customers from Joint Venture ("1 + 1 > 2")
Expanding Chemistry Services and Enhanced Product Portfolio into New Clients and New Projects
Technical Synergies Broadening Existing Product Portfolio with New Custom Chemistries and Processes
Stronger Chemistry and Process Expertise Serving New Drug Pipelines from Drug Discovery, Development, to Manufacturing
Transforming New Custom Chemistries and Custom Processes into Custom Manufacturing Projects
Addition of 2000+ New Custom Products to Product Portfolio
More Resources for Internal Development of New Custom Products/Processes, esp. for Bulk Quantity and High-value Drug-like Pharmaceutical Products
Extending Continuously Building Block Compound (BBC) Portfolio
One-Stop Custom Chemistry Solution Platform Fulfilling Chemistry Challenges in New Drug Discovery, Development, and Manufacturing Processes

Custom Chemistry Service (CCS)

- Custom Chemistry Service Offering Competent Chemistry Services (FTE/FFS and Process Development) through a Strategic Joint Venture
- Well Recognized 17+ Yrs of Experience/Expertise with 160+ Dedicated Chemists and 60,000 sq. ft. of State-of-the-Art Chemistry Facility
- Executed Successfully Challenging Projects for 100+ Global Clients
- Industrial Credentials (Reference available upon request)
- Mastery of Project Management, IP management, and Customer Relationship
- 2500+ New Compounds added to Product Portfolio, with 25% in stock
- Know-how Custom Chemistries and Processes driving Process Development and Scale-up
- GMP Like Services
- One-stop Custom Chemistry Solution Platform Satisfying all Chemistry Needs in New Drug Discovery, Development, and Manufacturing Processes

Success Track of Expertise and Experience

Profound Offerings in CCS

- Medicinal Chemistry Services
 - Hit to lead discovery
 - Lead Optimization
- Customer Synthesis (from discovery to preclinical)
 - Library templates, building blocks, libraries, intermediates
 - Literature and commercial reference compounds, metabolites
 - Milligram to multi-kilogram quantities
- SFC Chiral Separation Services
 - Separation of enantiomers
 - From milligrams to multi-grams scale
- Contract Research for Chemical Process R&D
 - Route selections and reaction optimizations
 - Scale-up synthesis of non-GMP APIs
 - Manufacturing advanced intermediates and regulatory starting materials
 - o Impurity profiling and synthesis of impurities as reference compounds
- Analytical Services: supporting chemistry, method development, impurity profiling, etc.

Drug Discovery → Preclinical Drug Development

Custom Fluoro Products

- 6500+ high-value fluoro-aromatic, fluoro-aliphatic and fluoro-heterocyclic products, along with other halogenated analogs
- 35% of Products in stock
- Production capacity in grams, kilos and tons
- Sustainable cost competitiveness & excellent quality
- Widely used in pharmaceuticals, agrochemicals and advanced materials

Fluoro Heterocylics such as pyridines, pyrimidines, indoles, indazoles, pyrizines, ...

Fluoro Aliphatic Compounds such as 1-fluorocyclopropanecarboxylic acid and ethyl-2-fluoroacetoacetate

Fluoro Aromatic Compounds such as:

Acetophenones Anilines

Phenols & Anisoles Benzaldehydes

Benzamides Benzenes

Benzoic acids/their esters Benzoyl chloride

Benzonitriles Benzotrifluorides

Benzyl alcohols & benzyl halides Benzylamines

Cinnamic aldehydes/Cinnamic acids

Hydroxybenzoates

Hypnone (1-Phenyethanone)

Phenylacetonitriles/Phenylacetic acids

Phenylisocyanate s/phenyl isothiocyanates Phenylhydrazine series

Phthalic acids & anhydrides Toluene series

Full Spectrum Fluor Technologies and Products

Fluorinating Reagents

Inorganic/ionic fluorides

SelectFluor® I and II

Selective fluorination with fluorine gas (F₂)

Trifluoromethylation with SF₄

N-fluorobenzenesulfonimide, and pyridine HF/triethylamine tri-HF

Sustainable Process Economics, Excellent Quality and Stable Supply

High-purity Omega-3 Products

- 15 Years of Development with an Established GMP Manufacturing Facility Complying with cGMP, ISO9001, ISO14001, ISO 10012, and ISO22000
- Manufacturing Capacity 650 MT/year of High-purity EPA and DHA Products
- Serving both GMP and non-GMP Markets
- Key Product Offerings
 - A high purity Omega-3 EPA in ethyl ester (EE) form, EPA98EE, in its clinical Phase II/III development
 - Several high purity Omega-3 EPAs and DHAs in EE forms in early phase clinical developments
 - A broad range of EPA, DHA, and their combo products in EE form used in nutritional supplements, foods, and beverages markets
 - Omega-3 Acid Ethyl Ester 90 (offset to Lovaza®)
 - DHA-free, high purity Omega-3 EPA products in EE form with EPA concentration from 70% to 99% (include offsets to Vascepa® and Epadel®)
 - High purity Omega-3 DHA products in EE form with DHA concentration from 70% to 97%
 - EPA-free, high purity Omega-3 DHA API in EE form, DHA95EE
 - Mixed EPA and DHA in various ratios of total EPA+DHA from 70% to 95%
 - Various EPA and DHA grades in EE form such as EPA80EE, EPA90EE, EPA98EE, DHA80EE, DHA90EE
 and DHA95EE
 - Omega-3 EPA and DHA products, in the acid form, such as EPA90A, EPA95A, DHA90A and DHA95A
 - Custom Omega-3 EPAs, DHAs, and EPA/DHA combos

Strategic New Product Developments

Specialty Boronic Acids/Esters

Fmoc-Protected Amino Acids

Lab Reference Compounds (APIs, Metabolites, impurities, ...)

Heterocyclic Compounds

- Pyridines, naphthyridines, and pyrazines
- > Azabicyclo compounds and diazaspiro compounds
- Cyclopropane, cyclobutane, and cycloheptane compounds
- Indoles, azaindoles, oxindoles, isoindoles
- Indazoles
- Quinolines, hydroquinolines, isoquinolines, and pyranopyridines
- > Pyrrolidines
- Thiophenes
- Protected amino acids, and oligonucleotides
- Biaryl compounds

Ligands for Industry Catalyst (1)

Indanone and Indene Series

$$R_1$$
 R_2
 R_1
 R_2
 R_1

R1=H, Methyl, t-Butyl, etc. R2=H, Methyl, ethyl, iso-propyl, etc.

$$R_1$$
 R_2
 R_2

R1=H, Cl, Br R2=H, Methyl, Ethyl, iso-propyl, n-propyl, n-butyl, etc.

$$R_1$$
 R_2

R1=H, Methyl, t-Butyl. etc. R2=H, Methyl, iso-propyl, etc.

Ligands for Industry Catalyst (2)

A Member of BHWTech Group

Bridged Cyclopentadienyl Compounds

X=C, Si R_1 =H, t-Bu, etc.; R_2 =H, Me, Ph, etc.; R_3 =H, n-Bu, n-Pr, t-Bu, etc.

$$R_4$$
 R_4
 R_2
 R_2
 R_2

X= C,Si $R_1=H$, Me, n-Bu, etc; $R_2=H$, Me, Ph, etc.; $R_3=H$, n-Bu, n-Pr, t-Bu, etc., $R_4=Me$, Ph, etc.

X= C,Si R_1 =H, Me, n-Bu, etc; R_2 =H, Me, Ph, etc.; R_3 =H, n-Bu, n-Pr, t-Bu, etc.

Perfluorinated Aryl Borate Compounds

$$\begin{bmatrix} F_5 \\ F_5 \\ F_5 \end{bmatrix} \begin{bmatrix} HNR_3 \end{bmatrix}^+$$
(a)

$$\begin{bmatrix} O & R' \\ F_5 & F_5 \end{bmatrix} \begin{bmatrix} HNR_3 \end{bmatrix}^+$$
(b)

$$\begin{bmatrix} OH \\ F_5 \\ F_5 \end{bmatrix} \begin{bmatrix} HNR_3 \end{bmatrix}^+$$

$$\begin{bmatrix} OH \\ F_5 \\ F_5 \end{bmatrix} = \begin{bmatrix} HNMe(C_{10}-C_{18}H_{21}-H_{37})_2 \end{bmatrix}^+$$

Imine Ligated NHC-Pd Catalysts

A Member of BHWTech Group

N-Methoxy-benzenemethanimine-chloro-[1,3-bis(mesityl)-imidazole-2-ylidene]palladium(II)

- 15.5% to 16.0% Palladium
- Ultra-low catalyst load as low as 0.005 mol%

N-Phenyl-benzenemethanimine-chloro-[1,3-bis(mesityl)-imidazole-2-ylidene]palladium(II)

- 14.3% to 14.8% Palladium
- Ultra-low catalyst load as low as 0.001 mol%

	A/CI + A/	B(OH) ₂ KOH(1.5 equiv) PrOHH ₂ O, 80 °C	Ar-Ar			ArCI + ArB(OH ₂		
Entry*	Aryl chlorides	Boronic acids	Product		f (%)	CAN CAN CO	Pr)	7
i	-{_}-a	(HO) ₂ B-	9a	87 (85)	6c 85	Pr / Pr / OMe CI - Pd N / OMe	10	السر
2	⟨J−a	(HO) ₂ B-	9b	>99 (92)	>99			iald)
3	A-cı	$-$ 8 $_{\underline{c}}$ (OH)	9c	92	94	Entry" Aryl chlorides Boronic acids Prod	6a	ield ^b 6c
4	CMe	(HO) ₂ B—(OH)	9d	96 (92)	94	1 (HO) ₂ B	82	98
5		(HO) ₂ B-(C)H)	9e	88 (84)	87	2 (HO) ₂ B - 9k	88	97
6	(N) CI	(HO) ₂ B-	90	93 (89)	97	3 (HO) ₂ B—F 91	37 56	99
7	(s	$A_2(OH)$	9g	93 (86)	99	CMe CHCD-R		
8	F ₃ C-{	(HO) ₂ B-	9h	>99 (96)	>99	5 (HO)28 (P) 90	69	92
9	онс фа	(HO) ₂ B	9i 9j	95 (91) 95 (88)	98 95	6 (HO) ₂ B-	73	90
11		вно _{з-} в-	9k	96 (90)	99	7 (HO) ₂ B	75	91
12		яно _й в—С—Е	91	>99 (91)	>99	8 F ₃ C-\(\bigce \)-\(\alpha \) -\(\alpha \) (HO) ₂ B-\(\bigce \) 9h	93	98
13	F ₂ C—CI	(HO) ₂ B	9m	99 (97)	>99	9 Ac CI (HO) ₂ B 9j	87	92
14	CI	(HO) ₂ В—С	9n	91 (86)	97	* Reaction condition: catalyst 6 (0.005 mol %), ArCl 7 (3.0 (3.15 mmol, 1.05 equiv), KOH (4.5 mmol, 1.5 equiv), 'PrOH		
15	CMe CI	¢но} ₂ в-√	90 90	>99 (93)	96	Reactions were completed in 2 h. ^b GC yield based on ArCl 7.		
16	C)-cı	(HO) ₂ B	ы 9р	90 (84)	99			

Specialty Chemicals

Specialty Ingredients

DL Panthenol [USP] DL-Panthenol Ethyl Ether [USP]

Kojic acid [USP] Vitamin E acetate [USP] Sodium dehydroacetate [USP] Potassium sorbate [USP]

L-Cysteine [USP] alpha-Lipoic Acid [USP]
L-Cystine [USP] Mandelic acid [USP]

Coenzyme Q10 (CoQ 10) Itaconic acid

ε-Polylysine Glycine ethyl ester HCl

Specialty Additives

Rheology Modifies/Thickeners (Non-ionic Associated & Alkali-swellable)

Dispersants

Surfactants

Adhesion Promoters

UV Stabilizers/Antioxidants

Silanes and Silicone Crosslinkers

Diisocyanates

Green Building Blocks

LA, LAE and LAB: Levulinic Acid, Ethyl & Butyl Ester

Uses for making green solvents, plasticizers & starting materials

IA: Itaconic Acid

Uses for making acid functional copolymers and emulsions

Catalyst Ligands

Summary

- Chemistry and Technology-Driving, and well-balanced business portfolio serving pharma/biotech and specialty chemical markets
- A Privately held, USA-based custom chemistry developer and manufacturer with 27+ years of proven track record
- Unique expertise in multi-step challenging chemistry, process scaleup, custom manufacturing, and application development, coped with competent manufacturing capability
- R&D in USA focusing on new developments in technology, process, and applications, enabling business successes while streamlining lean manufacturing in China
- A one-stop custom chemistry solution platform serving drug discovery/development/manufacturing processes

We Appreciate Your Attention!